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P. Núñez†∗, R. Vázquez-Martı́n‡, A. Bandera‡ and F. Sandoval‡
†Grupo de Telecomunicaciones, Dept. Tecnologı́a de los Computadores y las Comunicaciones, Universidad de
Extremadura, Cáceres, Spain.
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SUMMARY

This paper describes a complete laser-based approach for
tracking the pose of a robot in a dynamic environment.
The main novelty of this approach is that the matching
between consecutively acquired scans is achieved using their
associated curvature-based representations. The proposed
scan matching algorithm consists of three stages. Firstly,
the whole raw laser data is segmented into groups of
consecutive range readings using a distance-based criterion
and the curvature function for each group is computed.
Then, this set of curvature functions is matched to the
set of curvature functions associated to the previously
acquired laser scan. Finally, characteristic points of pairwise
curvature functions are matched and used to correctly
obtain the best local alignment between consecutive scans.
A closed form solution is employed for computing the
optimal transformation and minimizing the robot pose shift
error without iterations. Thus, the system is outstanding in
terms of accuracy and computation time. The implemented
algorithm is evaluated and compared to three state of the art
scan matching approaches.

KEYWORDS: Scan matching, Adaptive curvature function,
Mobile robotics.

1. Introduction

One of the key functions in an autonomous mobile robot
is to keep track of its pose—position and orientation—
while moving. To achieve this relative localization and to
reduce the increasing error from the use of dead reckoning,
it is common that the robot carries external sensors, like
a 2-D laser range finders, to perceive the environment.
Environment perceptions taken from different locations and
instants of time could be matched and then it would be
possible to update the position estimate according to the
matching results. It can be noted that the goal of this matching
process would not be directly to build an accurate map, but
rather to ensure a stable and fast localization, regardless of
the robot speed and without any restrictions of the covered
distance.9 To achieve that, the scan matching techniques
estimate the robot displacement between two instants of time
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by directly comparing the perceived scans. Thus, they can be
used, for instance, to improve the performance of navigation
approaches which try to solve the simultaneous localization
and mapping (SLAM) problem. The SLAM problem has
received considerable attention over the last decade and
different solutions have been proposed.3,6,11 The difficulty of
the SLAM approach lies in the fact that an accurate estimation
of the robot trajectory is required to obtain a good map. As has
been pointed out by several authors, it is possible to reduce
the localization error due to slippage using scan matching
algorithms as an improved odometry.8,12,15

One of the main differences between the existing scan
matching algorithms is their usage and not their features
extracted from the raw data, as line segments or corners.9

Thus, in structured environment it can be assumed that
the existence of polygonal elements can be extracted from
the data and can be used to align the scans.5,7 These
methods are efficient and reliable and, therefore, they have
been widely used to provide robot self-localization in
these environments. However, these geometric items are not
present in unstructured environments. To deal with these
situations, a second category of raw data matching techniques
which work without explicit geometric interpretation has
been developed.14,16 However, most of these point-to-point
methods have been designed for situations in which the
environment is static during the measurement process.
Therefore, dynamic items (e.g. people or objects moving
around the robot) can lead to serious errors in the pose
estimation.2

Independently of the chosen strategy, it would be desirable
that a scan matching algorithm handle the following three
demands2:

1. Eliminate scan points associated to dynamic objects in the
environment or otherwise the result will be incorrect.

2. Match in structured and unstructured environments.
3. Provide information about the uncertainty of the estimated

robot pose.

This paper proposes a novel scan matching approach
based on the curvature information associated to the
scan (named CF-SMA, from Curvature Function—Scan
Matching Algorithm). This algorithm can deal with dynamic,
structured or unstructured environments. Besides, it obtains
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470 Fast laser scan matching approach for mobile robots

an uncertainty matrix for the robot pose. In this approach,
the fast and robust correspondence between two consecutive
scans is achieved from the matching of characteristic
points extracted from pairwise curvature functions. The
representation of the laser scan data using a set of adaptively
estimated curvature functions was originally proposed by the
authors in a previous work.13 In this paper, this concept is
applied to the efficient matching of laser scans. Experimental
results show that the performance of the proposed approach
is high in terms of precision and computational cost. Thus,
the method has been successfully compared to other similar
approaches.

2. Proposed Method

Let pr
t = (xr

t , y
r
t , θ

r
t )T be the t-th pose of the robot, where

(xr
t , y

r
t ) are the co-ordinates in the XY horizontal-frontal

plane and θr
t is the orientation with respect to the vertical

axis Z. The aim of scan matching approach is to calculate an
estimation of the robot displacement between two different
instants of time by comparing consecutive scans provided
by a laser range finder. This relative displacement, �pr =
(�xr, �yr, �θr )T , can be used to update the robot pose
and, therefore to provide an alternative source of information
to the robot odometry (in fact, this relative displacement
will be usually more reliable than the odometric information
provided by proprioceptive sensors, which could be affected
by sliding errors). Given a pose and the estimated relative
shift �pr , the updated pose pr

t+1 can be calculated according
to the kinematics model:
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The main limitation of scan matching approaches is
that the quality of the matching process is crucial for an
accurate estimation. In fact, a bad association between two
consecutive scans provokes a significant robot pose error
which is non-recoverable in most of the situations.2 Thus,

a significant advance in these scan matching algorithms is
the possibility of removing those outliers points or features
which increases the pose error.

The approach described in this paper proposes a curvature-
based scan matching algorithm which removes those features
which can increase the robot pose error. As can be noted in
Fig. 1, the proposed approach consists of three independent
stages. Next, a brief description of the modules depicted in
Fig. 1 is provided:

• CF-SMA1. At the first stage, the current scan, C, is
segmented into groups using a distance-based criterion.
Then, the curvature function for each group is computed
(see Fig. 1). This curvature function is calculated using
an estimator which adapts itself to the local surrounding
of the studied range reading. This segmentation process is
described with details in a previous work.13

• CF-SMA2. A correlation matrix which measures the
similarity between the sets of curvature functions
associated to the current scan and to the previously
acquired scan (denoted as reference scan, R) is built.
This matrix allows to select pairwise curvature functions
and removes isolated groups which will not be included
in the robot pose estimate process. In order to perform
this calculation in a fast and robust way, the approach
implements a FFT algorithm which allows to compare
curvature functions only using products. The output of
this stage are two subsets of corresponding points, C ′ ⊆C

and R′ ⊆ R, which permit to compute the pose shift as the
optimal transformation mapping C ′ onto R′.

• CF-SMA3. Finally, the best local alignment between
consecutive scans is obtained using C ′ and R′. Here,
a closed form solution is employed for computing the
optimal transformation, improving computational time of
the scan matching algorithm. Robot’s pose is updated
according to Eq. (1) and current scan is saved as the new
reference scan (R ←− C).

Next subsections present a detailed description of each
stage. In order to improve the understanding of the proposed
algorithm, Table I summarizes the main symbols used in this
paper.

Fig. 1. Overview of the scan matching algorithm proposed in this paper. The method uses three consecutive stages in order to obtain the
best alignment between consecutive scans.
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Table I. Main symbols used in this paper.

Symbol Description

pr
t = (xr , yr , θr ) Robot’s position at time instant t

�pr = (�xr , �yr , �θr ) Relative displacement between two consecutive time instants
(ρ, ϕ)l and (x, y)l Polar and Cartesian co-ordinates of the l range reading, respectively
σ 2

ρ and σ 2
ϕ Variance of the range and orientation measurement errors (laser range finder)

NR Number of data points of the whole scan
C and R Current and reference scans
Nc and Nr Number of segments after distance-based segmentation (current and reference scans)
Nc

Ri
and Nr

Ri
Number of data points of the i segment (current and reference scans)

kl Adaptive k value for calculating the curvature function
ηl Curvature index associated to the data point l

ηi
l Curvature index associated to the data point l, which belong to the segment i of the scan

Ccf and Rcf Set of curvature functions associated to the scans (current and reference)
Pcf Set of pairwise curvature functions
υij Correlation index between curvature functions ci ∈ Ccf and rj ∈ Rcf
υmax Maximum correlation index which describes pairwise curvature functions
Nk Number of matched curvature functions
Nt ′ Number of possible matched points
Nt Number of real matched points
Nl Number of characteristic points
Nc

l and Nr
l Number of characteristics points for the current and reference scan, respectively

n Number of point at right and left sides of each characteristic point

2.1. CF-SMA1. Calculation of the set of curvature
functions associated to the laser scan
In robotic field, scan data are typically in the form
{(ρ, ϕ)l|l=1...NR

}, on which (ρ, ϕ)l are the polar co-ordinates
of the l-th range reading (ρl is the measured distance of an
obstacle to the sensor rotating axis at direction ϕl) and NR is
the number of range readings. It is assumed that each range
reading is independently affected by Gaussian noise in both
co-ordinates, range and bearing, with zero mean and variance
σ 2

ρ and σ 2
ϕ , respectively. The proposed scan matching

approach is based on the matching of physical entities of the
scene which are present in both scans. From this matching,
the search of pairwise points can be derived. Therefore, it
will be necessary to obtain a complete description of the
environment which allows to identify a set of distinguished
entities. To obtain this description, the scan is firstly
segmented using the adaptive breakpoint detector.4 This
detector proposes that two consecutive range readings belong
to the same segment if the distance between them is less than
a variable threshold, instead of a constant one. Since the
sensor angular increment is constant, this threshold will only
depend on the range scan distance. The threshold value can be
determined from the geometrical scheme shown in Fig. 2. In
this figure, it is defined as a virtual line which passes through
the scan point ρl−1 making an angle λ with respect to the
scanning direction ϕl−1. This angle will represent the worst
case of incidence angle of the laser scan ray with respect to a
line for which range readings are still reliable. Its value will be
determined with user experience. Under this constraint, with
some assumptions and further mathematical development,
the adaptive breakpoint detector specifies that two
consecutive range readings belong to different segments if

||(ρ, ϕ)l − (ρ, ϕ)l−1|| > ρl−1 · sin �ϕ

sin(λ − �ϕ)
+ 3σρ, (2)

where �ϕ is the laser angular resolution, λ is a user-specified
constant parameter and σρ the range standard deviation of the
sensor measures. The presence of this value in the equation
allows to encompass the stochastic behaviour of ρl .4

Points which belong to the same segment i in the current
scan are associated to one element of the environment.
If each group of points is characterized by a curvature
function, ci = {ηi

l | l = 1, . . . , Nc
Ri

}, where ηi
l value is the

curvature index associated to the range reading l of the
segment i, then the whole scan will be described by a set of
Nc curvature functions, Ccf = {ci | i = 1, . . . , Nc}. Curvature
functions basically describe how much a curve bends at each
point. Peaks of the curvature function correspond to the
corners of the represented curve and their height depends
on the angle at these corners. Flat segments whose average
value is larger than zero are related to curve segments and

Fig. 2. Geometrical scheme associated to the adaptive breakpoint
detector. Section 2.1 explains with details the algorithm.
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472 Fast laser scan matching approach for mobile robots

those whose average value is equal to zero are related to
straight line segments. Thus, the curvature function can be
used as a descriptor of the current scan segment. In this case,
the curvature estimator is a modified version of the adaptive
method described in ref. [13]. With respect to the previous
version, this new algorithm reduces the computational load
characterizing each range reading by a unique value (ki). In
the previous work, the algorithm calculated the maximum
lengths of the laser scan presenting no discontinuities on
the right and left sides of the range reading (named kf and
kb, respectively), and used them to obtain two vectors which
allowed to calculate the curvature value. Let {(x, y)l|l=1,...,NR

}
be the Cartesian representation of the range images, where
xl = ρl cos ϕl and yl = ρl sin ϕl; the method used to calculate
the adaptive curvature function for each extracted segment
consists of the following steps:

1. Calculation of the maximum length of laser scan
presenting no discontinuities on the right side of the
working range reading l, kl . This is obtained as the largest
value that satisfies:

kl+l−1∑
j=l

d(j, j + 1) − d(l, l + kl) < Uk, (3)

where d(l, j ) is the Euclidean distance from range reading
l to range reading j , and Uk is a threshold value which
allows the smoothing of the noise associated to the laser
data acquisition. As can be noted in Eq. (3), the kl value is
then adaptively selected according to the surrounding of
each range reading l.

2. Estimation of the curvature angle associated to each range
reading l, denoted as ϑl . According to the previous kl

value, this angle ϑl can be obtained as (see Fig. 3):

ϑl = arctan

(∑kl+l−1
j=l (xj+1 − xj )∑kl+l−1
j=l (yj+1 − yj )

)
(4)

Fig. 3. Calculation of the curvature angle associated to each range
reading l, ϑl . The maximum length of laser scan presenting no
discontinuities on the right side of the working range reading l, kl ,
was adaptively estimated according to the surrounding of the range
reading l.

3. Calculation of the curvature index associated to each range
reading l. This value can be estimated using the equation:

ηl = ϑl+1 − ϑl. (5)

Figure 4a illustrates this segmentation stage for a real
scan of a structured environment. As is shown, eight distinct
segments are defined in the figure. Isolated group of points
are removed using a constraint related to the size of each
segment.13 In Fig. 4b, the absolute value of the curvature
functions associated to each scan segment in Fig. 4a is shown.

2.2. CF-SMA2. Points matching from two consecutive scans
As aforementioned, the proposed approach is based on the
idea that the tracking of physical entities of the scene can
be carried out by matching the sets of curvature functions
associated to two successively acquired scans. Thus, Ccf is
compared to the set of curvature functions from reference
scan, Rcf. If the number of groups in this reference scan is Nr ,
and being Nr

Ri
the number of range readings for each one of

these segments, Rcf is defined as Rcf = {ri | i = 1, . . . , Nr},
being ri = {ηi

l | l = 1, . . . , Nr
Ri

}. For the sake of efficiency
and robustness, instead of considering all the points of the
set of pairwise curvature functions, Pcf, a second matching
step is used to search for corresponding points in Pcf. Then, in
order to ensure the quality of the scan matching algorithm, the
proposed approach divides the matching stage in two steps.
Firstly, the matching of curvature functions is obtained in a
fast way using the Fourier domain. Next, the second matching
step consists of matching points from the set of corresponding
curvature functions. Only these pairwise points are used to
obtain the estimated displacement �pr .

(1) Matching of the curvature functions associated to
the current and reference laser scans. Once the curvature

Fig. 4. CF-SMA1 description: (a) The environment scan is
segmented using the distance-based criterion and (b) curvature
functions of each segment are computed. In this case, Nc = 8.
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functions associated to each group of the reference scan
R and current scan C have been obtained (Section 2.1), a
matching is performed between both the sets to obtain a first
estimation of the transformation that maps C onto R. This
transformation will roughly correspond to the movement
of the robot between the acquisition of these scans. To
match these two sets of curvature functions, a matrix of
possible matching pairs is built. The element υij of this
matrix is defined by the similarity measure between two
curvature functions. A fast way to measure the similarity of
two curvature functions is to work on the Fourier domain,
where correlations are transformed into products.1 In order to
achieve this transformation with a low computational time,
FFT is used. It implies that the length of each curvature
function must be previously normalized to a value of 2n

(e.g. 64, 128 or 256). Then, the correlation index or distance
function, υij, is defined as

υij = IFFT(FFT[ci] · FFT[rj ])i=1,...,Nc,j=1,...,Nr
, (6)

where IFFT is the Inverse Fast Fourier Transform, and
ci ∈ Ccf and rj ∈ Rcf. When all correlation indexes have been
calculated, the maximum value of this correlation matrix is
found for each row (υmax

ij ) and the corresponding curvature
functions of C and R are matched if this value is higher
than a previously defined threshold Uc. This value Uc is
imposed to eliminate matched curvature functions with a
low value of correlation index. The described process is
iteratively applied to obtain a set of pairwise curvature
functions, Pcf = {pk = (ci , rj )k | ci ∈ Ccf, rj ∈ Rcf, υij =
max{υin | n = 1, . . . , Nr

l }, k = 1, . . . , Nk }, where Nk is the
number of matched curvature functions.

(2) Matching pairwise points from the set of corresponding
curvature functions. Each point of a curvature function
has an associated range reading. Thus, the set of pairwise
curvature functions, Pcf, defines a set of N ′

t possible
matched points, Mt ′

cf . Let mc
l = {(xl, yl)}l=1,...,Nt ′ be the

set of range readings associated to the matched curvature
functions of the current scan. In the same way, let mr

l =
{(xl, yl)}l=1,...,Nt ′ be the set of range readings associated
to the matched curvature function of the reference scan.
Therefore, Mt ′

cf = {(mc
l , m

r
l ) |mc

l , mr
l ∈ R

2, l = 1, . . . , Nt ′ }.
In order to reduce and to improve the quality of the matching
process, this second step will select and match only Nt range
readings from the set of N ′

t possible matched points, Mt
cf ⊆

Mt ′
cf . The selection of these Nt points is based on the detection

of characteristic points on the curvature function. A point of
the curvature function is a characteristic one if its value is
higher than a fixed threshold Up, and is also a local maximum
in the curvature function, that is

ηi = ϑi+1 − ϑi ≥ Up

ηi−1 < ηi ≥ ηi+1.

(7)

Figure 5 shows a fragment of the scan presented in
Fig. 4 and the associated curvature function. For this scan,
in Fig. 5b, the algorithm detects two characteristic points
(values of curvature function upon Up). Range readings A =
(xa, ya) and B = (xb, yb) marked in Fig. 5a are associated to

Fig. 5. (a) Fragment of a laser scan captured by the 2-D laser
range finder and (b) curvature function associated to scan (a). Two
characteristic points are detected and marked (A and B).

the characteristic points detected on the curvature function
shown in Fig. 5b.

Let Nc
l and Nr

l be the number of characteristics points
for the current and reference scan, respectively. For
each pairwise curvature functions a matching between
each characteristic point, mc

i = {(xi, yi)}i=1,...,Nc
l

and mr
j =

{(xj , yj )}j=1,...,Nr
l
, and a similarity coefficient, S(mc

i , m
r
j ), is

computed. This similarity coefficient is based on the Pearson
correlation and it is obtained using the n neighbouring points
on the left and right sides of the characteristic point:

S
(
mc

i , m
r
j

) = ∣∣S(
mc

i , m
r
j

)
x
· S

(
mc

i , m
r
j

)
y

∣∣, (8)

where S(mc
i , m

r
j )x and S(mc

i , m
r
j )y are the Pearson

coefficients for the x and y co-ordinates, respectively,

S
(
mc

i , m
r
j

)
x

=
∑n

k=1

(
xc

ik − x̄c
i

)(
xr

jk − x̄r
j

)
√∑n

k=1

(
xc

ik − x̄c
i

)2 · (
xc

jk − x̄r
j

)2
,

S
(
mc

i , m
r
j

)
y

=
∑n

k=1

(
yc

ik − ȳc
i

)(
yr

jk − ȳr
j

)
√∑n

k=1

(
yc

ik − ȳc
i

)2 · (
yr

jk − ȳr
j

)2

(9)

being (xc
i , y

c
i ) and (xr

j , y
r
j ) the Cartesian co-ordinates for

each point (c and r indicate current and reference scan,
respectively), (x̄c

i , ȳ
c
i ) and (x̄r

j , ȳ
r
j ) the average values for

the set of n points. S(mc
i , m

r
j ) is a positive value in the range

from 0 (there is no correlation) to 1 (both scans are equal).
In order to improve this second matching step, the algorithm
rejects candidates that satisfy these conditions:
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(a) Low strength. This concept is detected when S(mc
i , m

r
j ) ≤

Smin, being Smin a threshold which is used to eliminate
candidates with low correlation index.

(b) Low distinctiveness. There exists mr
l satisfying

S(mc
i , m

r
l )/S(mc

i , m
r
j ) ≈ 1. In other words, those candi-

dates that have similar Pearson coefficients are rejected,
reducing the ambiguity in the matching process.

(c) Unidirectionality. For mc
m, the match maximizing

{S(mc
m, mr

j )}j=1,...,Nr
l

is m̂r
n, but for this latter one, the

match maximizing {S(mc
i , m

r
n)}i=1,...,Nc

l
is m̂c

p 
= m̂c
m.

Therefore, the final process obtains a set of Nl matched
characteristic points. Finally, around each characteristic
point, the algorithm defines a range of n matched points
at right and left sides. These Nt pairwise points (Nt =
Nl(2n + 1)), constitute the set of final matched points, Mt

cf =
{(mc

l , m
r
l )| mc

l , mr
l ∈ R

2, l = 1, . . . , Nt}. The robustness and
accuracy of the proposed method is based on these two
described matching steps. Figure 6 shows two fragment of
consecutive scans and their associated curvature functions.
Matched points of these curvature functions are presented
in Fig. 6b. Corresponding Cartesian co-ordinates points are
marked in Fig. 6a. In this case, Nt = 65 and Nl = 2 (being
n value equal to 30. Obviously, the Nt value depends on
the number of data points on the left and right sides of the
characteristic points).

2.3. CF-SMA3. Calculation of the relative translation and
rotation
The purpose of the matching process described in Section 2.2
is to provide a set of good quality matches which allows to
calculate the estimated pose of the robot. Two constraints
are imposed to an optimal scan matching algorithm: (i) to be
fast and (ii) to be accurate in the matching process in order to
avoid mistakes in the calculation of the relative displacement.

Fig. 6. (a) Two consecutive laser scans and matched points (Nt =
65) and (b) matching of curvature functions associated to scan (a).

These two constraints are solved using the two matching
steps defined in Section 2.2. Besides, the proposed method
obtains an optimal transformation for mapping the current
scan onto the reference scan using a closed form solution.
In this way, the algorithm minimizes the displacement error
without iterations, improving the computational cost.9

The solution of this problem consists of solving the
minimization of the error function:

E(R�θ, �T ) =
Nt∑
i=1

Nt∑
j=1

ωij

∥∥mc
i − (

R�θm
r
j + �T

)∥∥2
,

(10)
where mc

i and mr
j are the matched range readings belonging

to Mt
cf, and ωij is a binary value defined as 1 if mc

i and mr
j have

been matched or 0 if they have not been matched. R�θ and
�T are the searched rotation and translation matrices which
relate the current and reference scans. They are defined as

R�θ =
(

cos �θr sin �θr

− sin �θr cos �θr

)
, (11)

�T =
(

�xr

�yr

)
, (12)

where �pr = (�xr , �yr , �θr )T describes the estimated
relative shift which allows to estimate pr

t+1 from pr
t . An

extended development of the optimization problem described
in Eq. (10) is detailed in ref. [9]. In that work, authors obtain a
closed-form expression which allows to compute the rotation
and translation matrices according to the set of matched
points, instead of employing an iterative minimization
algorithm. Thus, after computing the pose shift �pr as the
optimal transformation, the robot pose is updated using the
Eq. (1) and the current scan is saved as a new reference scan
(C ←− R). Convergence of the solution is ensured due to the
non-iterative method used by the scan matching algorithm to
estimate the robot displacement.9

Finally, to correctly integrate the scan matching process
into other navigation tasks, such as a SLAM algorithm,
it is necessary to know the statistical properties of the
estimate robot displacement, �pr . Thus, in SLAM, the
probability error distribution associated to the proposed
approach is needed to use the pose provided by the scan
matching algorithm in the SLAM stochastic process. This
error distribution is considered as Gaussian noise, and it
is represented by a covariance matrix, which indicates the
quality of the pose estimation. In fact, high values on the
main diagonal of the covariance reflects an increase in the
uncertainty. In order to obtain the error covariance matrix
of the pose estimation, the technique described by Lu and
Milios10 is used. In this work, the theory of linear regression is
applied on a scan matching algorithm to derive the covariance
matrix of the robot displacement analytically. Equation (10)
defines a non-linear error function of the displacement (R�θ ,
�T ), where the non-linearity is due to the robot rotation,
�θr .

Let (xc
i , yc

i ) and (xr
i , yr

i ) be the Cartesian co-ordinates of
two matched points, that is, both data point denote the same
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Fig. 7. (a) Pioneer 2-AT robot equipped with a LMS200 laser sensor; (b) one example of current and reference scans used for the first
experiment (see text for details) and (c) resulting maps after testing the proposed algorithm in the second experiment (dark grey color).
Map based on the odometry information (light grey).

point in the real scene. Therewith Eq. (10) simplifies to

E(R�θ, �T ) =
Nt∑
i=1

∥∥mc
i − (

R�θm
r
i + �T

)∥∥2
(13)

which can be linearized for small �θr values†, as

(
xc

i

yc
i

)
−

(
cos(�θr ) sin(�θr )

− sin(�θr ) cos(�θr )

)(
xr

i

yr
i

)
−

(
�xr

�yr

)

≈
(

xc
i

yc
i

)
−

(
1 �θr

−�θr 1

) (
xr

i

yr
i

)
−

(
�xr

�yr

)

⇒
(

xc
i − xr

i

yc
i − yr

i

)
−

(
1 0 yr

i

0 1 −xr
i

) ⎛
⎜⎝

�xr

�yr

�θr

⎞
⎟⎠

= (Y − Mb̂)T (Y − Mb̂) (14)

being b̂ = (�xr , �yr , �θr )T , the estimate robot displace-
ment, and M and Y are defined as

Y =
(

xc
i − xr

i

yc
i − yr

i

)
,

M =
(

1 0 yr
i

0 1 −xr
i

)
.

(15)

The above equation is linear, and thus, it is possible to
use the linear regression analysis to calculate an optimal
estimate of the covariance matrix associated to the robot
displacement10:

CR�θ�T = (MT M)−1σ 2 (16)

being σ 2 the variance of the measurement laser error,
supposing Gaussian with zero mean. In ref. [10], the authors

†Typical values for �θr are small due to the frequency of
acquisition of consecutive laser scans.

propose an estimate of the σ 2 value:

σ 2 = 1

Nt − 3
· Emin(b̂), (17)

where Emin(b̂) is the minimum error according to the estimate
robot displacement b̂. Thus, the covariance matrix of the
estimator b̂ is a 3 × 3 symmetric matrix whose diagonal
elements are the variances of the three-parameter estimator
and whose off-diagonal elements are their correlations:

CR�θ�T =

⎛
⎜⎝

σ 2
�xr σ�xr�yr σ�xr�θr

σ�xr�yr σ 2
�yr σ�yr�θr

σ�xr�θr σ�yr�θr σ 2
�θr

⎞
⎟⎠ . (18)

3. Results

The described scan matching algorithm has been tested
in various real environments. Our Pioneer 2-AT robot is
equipped with a SICK Laser Measure System LMS200 and
an embedded Pentium III-1000 MHz. The field of view is
180◦ in front of the robot and up to 8 m distance. The range
samples are spaced 0.5◦, all within the same plane. Figure 7a
shows the robot used in the experiments.

The experiments are focused on the evaluation of the
proposed method in terms of robustness, accuracy and
processing time in dynamic environments. Besides, a
comparative study with the main scan matching algorithms
has been provided. Previously, this section explains how the
parameters of the proposed algorithm have been adjusted.

3.1. Estimation of parameters
The proposed method requires choosing values for a set of
parameters. The main parameters described in this paper are:

1. The parameters σρ and λ used by the breakpoints detector.
2. The threshold value which determines the noise level

tolerated by the adaptive curvature detector, Uk .
3. The minimum correlation index value to be considered as

pairwise curvature functions, Uc.
4. The parameter Up, defined as the minimum value of a

curvature function to be considered as a characteristic
point of the scan laser.
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5. The number of points at right and left sides of the
characteristic point used by the closed form to determine
the relative displacement, n.

6. The threshold Smin which rejects pairwise characteristic
points with low strength.

As was described in Section 2.1, the process to obtain the
values for σρ and λ is based on the previous work of Borges
and Aldon.4 These values have been fixed to 0.005 m and
10◦, respectively.

The threshold value Uk is used to eliminate spurious noise
of the laser scan. In order to set it correctly, a set of real
plane surfaces has been scanned at different distances from
the robot. In these planar surfaces, the values must be fixed
to do not detect any local peak. This simple experiment has
provided a Uk value equal to 1.0. This value has been used
in the experiments described in this paper.

A similar experimental process has been used to obtain the
values for Uc and Up. The first one is employed to improve the
correlation process, thus pairwise curvature functions whose
associated correlation index is lower than Uc are discarded
(residual noise in the FFTs). On the other hand, Up is used
to detect characteristic points of the laser scan. In this case, a
set of real surfaces has been scanned at different distances. In
these situations, the values must be fixed to match both, the
curvature functions and to detect most of the characteristic
points of the scans. From this test, Uc and Up values have
been fixed to 0.4 and 0.2 rad, respectively.

Next, the value of n is calculated. It must be noted that
a low value of n implies few points to be used in Eq. (8)
and thus, estimated pose results can be inaccurate. On the
contrary, a high value of n includes too much points in
the estimation process, increasing the computational load of
the algorithm. In short, the value of n must be selected taking
into account these situations. After several tests where the
ground truth was known, it has been found that an n value
equal to 30 reduces the displacement errors at an acceptable
computation time.

Finally, the threshold Smin value was selected to 0.2. To
do that, a set of consecutive scans has been considered
at different robot position (distance and orientation). The
matching process between characteristic points was analysed
with details, Smin being selected in order to reject pairwise
points with small correlation value which would be wrong
solution.

3.2. Experiments with ground truth
The experiments reported in this section focus on two
aspects of the estimation performance: the accuracy of
the displacement estimates and the robustness with respect
to errors due to dynamic objects in the scene. To test
the proposed algorithm, two experiments are achieved.
The first experiment consists of matching two consecutive
scans acquired in the same robot location, (xr, yr , θ r )T =
(0, 0, 0)T , the difference being between one scan to another
due to the sensor’s noise and the presence of people moving
in the robot surrounding. Next, to the second scan is applied
a random rotation and translation (the average values of
the random translation and rotation are 100 cm and 15◦
respectively, with standard deviation σ r

x = σ r
y = 50 mm and

σ r
θ = 5◦ (see Fig. 7b). After applying the experiment 1000

times in this scenario, the final average displacement error
was limited to �xr = 12 mm, �yr = 22 mm and �θr =
0.12◦. In this particular case, the average number of matched
points Nt associated to the set of pairwise curvature functions
was 245.

The second experiment compares the overall accuracy of
the algorithm. The experiment consists of a set of consecutive
scan (1100 scans) acquired in a static environment. The
robot was tele-operated with small displacements (rotations
and translations) around its initial position pr

t=0 = (0, 0, 0).
Finally the robot was stopped and the final location (pose
and orientation) was measured with an uncertainty less than
2 mm in displacement and 0.2◦ in orientation. The true robot
pose at the end of the experiment was xr

a = 46 mm, yr
a =

52 mm and θr
a = 4.38◦. Results of the estimate robot pose

were xr = 29 mm, yr = 26 mm and θr = 3.9◦. Figure 7c
illustrates the resulting map after applying the proposed scan
matching algorithm (dark grey color) and the resulting map
only using the odometric information (light grey color).

3.3. A comparative study
Given the settings and specifications described in Section 3.1,
the Pioneer 2-AT robot has been tele-operated into
two different indoor scenarios: the research area at the
Telecommunication Engineering School (University of
Málaga) and the ISIS Group Laboratories at the Andalusian
Technology Park (Málaga). The first test area is used to test
the described approach in a static environment, meanwhile in
the second experiment some people were walking around the
robot, simulating a dynamic environment. The comparative
study is based on the accuracy, robustness, processing time
and easiness of the implementation. The methods used in
this comparative study have been provided by Gutmann’s
implementation (see ref. [7] for more details): Iterative Dual
Correspondence (IDC), Cox Algorithm5 and Histogram scan
matching.16 IDC consists of matching raw data of both scans
without features detection, e.g. all points of the scans are
used on the matching process. The matching problem is
solved by two rules: the closest point rule and the matching
range rule. On the contrary, Cox Algorithm extracts lines
from reference scan and subsequently matches data points
of current scan to these lines. Finally, the Histogram scan
matching defines an angle and x-y histograms from both
scans and compare them using a cross correlation function.
The covariance matrix of the robot displacement estimate is
directly provided by Gutmann’s implementation, which uses
the same method described in ref. [10]. This was one of the
reasons to use this method in the proposed scan matching
algorithm (Section 2.3). Thus, the displacement estimate
error of the proposed approach is easily compared with the
other scan matching algorithms of this comparative study.

Figure 8 shows the results of the proposed method
for the first test area. The experiment was made up
of 325 consecutive scans where the robot moves along
approximately 60 meters. The collected data was analysed
by the different scan matching algorithms. As is illustrated
in Fig. 8a-d, IDC, Cox and the proposed algorithm have
similar results, although Cox algorithm presents a slight
orientation error. On the other hand, Histogram method is
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Table II. Accuracy and average time comparison of scan matching algorithms in the first test area (Fig. 8).

pr
t=end Covariance matrix

Algorithm Runtime t (ms) xr (mm) yr (mm) θr (rad) σ 2
�xr (mm2) σ 2

�yr (mm2) σ 2
�θr (rad2)

Proposed method 5.21 −7219.3092 −23283.6090 −3.1280 43.5973 28.9805 1.11·10−6

IDC 9.76 −7269.3092 −24113.6090 −3.1280 93.5973 8.9805 1.17·10−6

Cox 6.01 −6304.4608 −24214.2705 −3.0854 3.6642 7.6670 1.21·10−6

Histogram 36.87 −7351.9021 −16347.9748 3.1285 105.3965 217.13 4.05·10−6

not an accurate method in this test area and the robot pose
estimate suffers from abrupt errors. Table II compares the
accuracy of the approach and the average time needed to
calculate the overall trajectories from the static environment
described in this section. In this table, �pr = (xr , yr , θr )T

describes the final robot pose estimate, σ 2
�xr , σ 2

�yr and
σ 2

�θr represent the average values of the main diagonal of
the covariance matrix associated to the robot displacement
estimate. Table III describes the maximum values of the main
diagonal covariance matrix along the robot trajectory, σ 2

�xr
max

,
σ 2

�yr
max

and σ 2
�θr

max
. Tables II and III allow to compare the

accuracy of the proposed method with respect to the classic
scan matching algorithms for this first experiment. Finally,
Fig. 8a-d shows the resulting map provided by each one of
the scan matching algorithms.

The second experiment presents people moving through
the robot trajectories. The robot moves approximately 80 m
where it acquires 525 consecutive scans. Results of the
proposed approach for this test area are shown in Fig. 9. There
are not additional corrective algorithms in this experiment

and the results are obtained directly by the proposed method.
It must be noted that dynamic objects are also represented
in the figure (grey points), but this information has been
correctly discarded by the proposed algorithm. Figure 9b
illustrates the trajectories calculated by different algorithms,
including the proposed approach. Table IV compares the
average time needed to calculate the trajectories from the
dynamic environment described in this section. Besides,

Table III. Maximum errors in the first test area (Fig. 8).

Maximum errors

Algorithm σ 2
�xr

max
(mm2) σ 2

�yr
max

(mm2) σ 2
�θr

max
(rad2)

Proposed 79.2312 44.71 1.45 · 10−7

method
IDC 133.6036 45.0509 1.94 · 10−7

Cox 29.9873 23.2671 2.01 · 10−6

Histogram 108.1252 254.5831 5.90 · 10−6

Fig. 8. Scan matching algorithms comparative study: (a) Proposed Algorithm; (b) the IDC algorithm; (c) Cox’s algorithm; and (d) the
histogram scan matching approach.
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Table IV. Accuracy and average time comparison of scan matching algorithms in the first test area (Fig. 9).

pr
t=end Covariance matrix

Algorithm Runtime t (ms) xr (mm) yr (mm) θr (rad) σ 2
�xr (mm2) σ 2

�yr (mm2) σ 2
�θr (rad2)

Proposed method 6.12 2631.8370 −4112.3917 −3.1280 9.7225 18.9105 0.3198 · 10−6

IDC 11.77 1921.3812 −2889.4661 3.0397 44.1961 17.4872 1.56 · 10−6

Cox 7.81 2722.7021 −4087.1654 −3.02666 9.1273 9.7877 0.3966 · 10−6

Histogram 47.21 7168.9900 −2729.3401 −3.1181 225.0112 731.3500 7.01 · 10−6

Table V. Maximum errors in the second test area (Fig. 9).

Maximum errors

Algorithm σ 2
�xr

max
(mm2) σ 2

�yr
max

(mm2) σ 2
�θr

max
(rad2)

Proposed 228.1331 154.7112 1.35 · 10−7

method
IDC 303.5510 460.7651 1.92 · 10−6

Cox 279.1355 162.5655 1.36 · 10−7

Histogram 220.111 637.7621 7.08 · 10−6

Table VI. Easiness of the implementation
comparative: Number of parameters needed

to be tuned.

τ

Proposed method 7
IDC 4
Cox 5
Histogram 2

Tables IV and V summarize the numerical results of the
accuracy of each scan matching algorithm similar to Tables II
and III. It can be appreciated that the proposed algorithm is
computationally faster and accurate than the other methods.
This is due to the non-iterative nature of the algorithm and
due to the fact that it uses a few but accurate matched points
for the calculation of the relative displacement. Robustness
to dynamic objects in the scene and possible correspondence
errors is improving in the described scan matching algorithm,
as can be appreciated in Fig. 9b.

Finally, Table VI compares the easiness of each
implementation (defined as the number of parameters in the
algorithm needed to be tuned, τ ). Classic IDC approach and
Cox’s algorithm employ as input parameters the maximum
number of iterations and the minimum error which describes
the convergence of the method (translation and rotation
minimum errors). Besides, both the methods include a set of
filters to improve the results (a projection filter and a median
filter, basically). Finally, Cox’s method uses a line extraction
method for making the Cox algorithm suitable for the scan
matching. On the other hand, Histogram scan matching
algorithm also includes a line extraction method for reducing
errors due to isolated peaks in the histogram associated to
measurement errors. Then, it only needs to apply histograms
to the consecutive scans in order to estimate the displacement.
In this comparative study, only those parameters which

Fig. 9. Scan matching algorithms comparative study: (a) Resulting
map obtained with the proposed algorithm in the second test
area and (b) trajectories computed by algorithms applied in
this comparative study. (Square: proposed method, circle: Cox’s
solution, triangle: IDC algorithm and star: Histogram approach.)

describe a correct operation of the algorithms have been taken
into account. As was commented in Section 3.1, the designer
has to select values for the distinct scan matching steps in
order to obtain a reliable set of matched points. For this
reason, the proposed approach needs to set more parameters
(τ = 7) than the other approaches. These parameters are
easy to design and their values are selected according to
the explanation described in Section 3.1. However, there
are some considerations to be taken into account, since the
success of the proposed approach depends on the number of
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points which takes part in the matching process and this value
is dependent on some parameters (e.g. Up, n or Smin). The
experiments described in this section demonstrate that the
correct selection of these values leads to acceptable operation
in different environments.

4. Conclusions

This paper proposes a new scan matching approach which
computes the transformation between the current and the
reference scans in three stages. Firstly, a segmentation stage
is conducted to divide the whole scan in a set of segments
associated to physical entities of the robot surrounding.
Then, the curvature function associated to each segment
is computed according to a modified algorithm of the
previous work presented in ref. [13]. Curvature functions
are invariant with respect to rotation and translation and
they can be quickly computed. Therefore, the second stage
of the approach matches curvature functions of both scans
providing a global estimation of the scan matching. Next,
the algorithm chooses characteristic points in corresponding
curvature functions as features to estimate the final robot pose
shift. Finally, the use of a closed-form solution to calculate
the updating of the pose and the definition of pairwise points
using curvature functions improve the computational load
of the complete algorithm. Besides, the uncertainty of the
estimate robot displacement is provided in order to test the
accuracy of the approach.

We have implemented and tested the technique in
several experiments, in order to measure the robustness,
accuracy and computational time of the whole scan matching
algorithm. The approach has been compared with other
classic scan matching algorithms into real dynamic and
static environments (IDC, Cox and Histogram methods
provided by Gutmann’s implementation7). According to the
comparative study results, the described approach improves
these classic scan matching algorithms working in static
and dynamic environments in accuracy, robustness and time
processing. Future works are focused on the implementation
of a SLAM algorithm using the pose information
estimate and on testing it in a dynamic and unstructured
environment.
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